Article 1320

Title of the article

THE CHANGES IN THE CONTENT OF ALIPHATIC ALCOHOLS IN BARLEY SEEDLINGS UNDER THE INFLUENCE OF AN ULTRAHIGH FREQUENCY ELECTROMAGNETIC FIELD 

Authors

Soboleva Ol'ga Mikhaylovna, Candidate of biological sciences, associate professor, sub-department of microbiology, immunology and virology, Kemerovo State Medical University (22 A Voroshilova street, Kemerovo, Russia), E-mail: meer@yandex.ru
Kondratenko Ekaterina Petrovna, Doctor of agricultural sciences, professor, sub-department of agronomy, breeding and seed production, Kuzbass State Agricultural Academy (5 Markovtseva street, Kemerovo, Russia), E-mail: meer@yandex.ru
Sukhikh Andrey Sergeevich, Candidate of pharmaceutical sciences, associate professor, senior researcher, Central Research Laboratory, Kemerovo State Medical University (22 A Voroshilova street, Kemerovo, Russia), E-mail: Suhih_as@list.ru
Kurbanova Marina Gennad'evna, Doctor of engineering science, professor, sub-department of agrobiotechnology, Kuzbass State Agricultural Academy (5 Markovtseva street, Kemerovo, Russia), E-mail: kurbanova-mg@mail.ru 

Index UDK

633.16:621.317 

DOI

10.21685/2307-9150-2020-3-1 

Abstract

Background. Higher fatty alcohols are a valuable raw material for pharmacology and can serve as an adaptogen in crop production, reducing post-stress effects in the cultivation of crops. Policosanols are linear saturated aliphatic alcohols with carbon atoms ranging from 20–24 to 32–34. Cereal germ contains some of the policosanols and can serve as a potential source for the isolation, purification, and further use of this class of chemical compounds. The purpose of the research is to study the features of the higher fatty alcohols content in various anatomical organs of barley seedlings under the influence of an ultra-high frequency electromagnetic field.
Materials and methods. The content of some higher fatty alcohols in barley seedlings after grain processing by ultrahigh frequency electromagnetic fields was determined by the method of chromatography-mass spectrometry.
Results. The character of distribution of 4 fatty alcohols – tetraconanol (lignocerin alcohol), docosanol (begenyl alcohol), dodecanol (lauric alcohol) and hexadecanol (cetyl alcohol) – in the anatomical organs of barley seedlings is shown. In sprouts, roots, shells and endosperm higher fatty alcohols are distributed unevenly. The predominant aliphatic alcohol is tetracosanol, found in all the studied anatomical parts of the seedling is dodecanol. Treatment of barley seeds before germination in the electromagnetic field of ultrahigh frequency allowed to increase the content of almost all studied alcohols.
Conclusions. After microwave treatment, the number of detectable aliphatic alcohols increased by 1,67 times relative to the control. The higher fatty alcohols are unevenly distributed over the organs of the barley seedling – the maximum is noted in the sprouts, the minimum – in the endosperm. Barley sprouts can be considered as a potential source of lignocerine and begenyl alcohols, where their content ishigh and is 26,20 and 5,67 %, respectively. The content of tetracosanolcan be increased more than twice by pre-microwave treatment of barley grain. 

Key words

sprouts, barley, electromagnetic field, microwave, higher fatty alcohols, docosanol, begenyl alcohol, tetracosanol, lignocerine alcohol, dodecanol, laurine alcohol, hexadecanol, cetyl alcohol 

 

 Download PDF

References

1. Weerawatanakorn M., Tamaki H., Asikin Y., Wada K., Takahashi M., Ho C. T., Pan M. H. International Food Research Journal. 2017, vol. 24, no. 3, pp. 1019–1028.
2. Lee J. H., Lee S. Y., Kim B. et al. Food Research International. 2015, vol. 72, pp. 174–183.
3. Irmak S., Dunford N. T., Milligan J. Food Chemistry. 2006, vol. 95, pp. 312–318.
4. Seo W. D., Yuk H. J., Curtis-Long M. J. et al. Journal of agricultural and food chemistry. 2013, vol. 61, no. 5, pp. 1117–1123.
5. Singh D. K., Li L., Porter T. D. Journal of Pharmacology and Experimental Therapeutics. 2006, vol. 318 (3), pp. 1020–1026.
6. Arruzazabala M., Valdes S., Mas R. Pharmacol. Res. 2013, vol. 34, pp. 181–185.
7. Alekseeva T. V. Biotekhnologicheskiy potentsial fraktsiy glubokoy pererabotki nizkomaslichnogo syr'ya: balansirovanie PNZhK-sostava, prognozirovanie kachestva, novye tekhnologii: avtoref. dis. d-ra tekhn. nauk [Biological potential of deep processing fractions of low-oil raw materials: balancing PUFA-composition, quality prediction, new technologies: author’s abstract of dissertation to apply for the degree of the doctor of engineering sciences]. Voronezh, 2014, 40 p. [In Russian]
8. Leung K. Y., Ng C. H., Huang Y., Chen Z. Y. J. Agric. Food Chem. 2005, vol. 53 (16), pp. 6289–6293.
9. Pasha I., Saeed F., Waqas K., Anjum F. M. Critical reviews in food science and nutrition. 2013, vol. 53, no. 3, pp. 287–295.
10. Choi S. J., Park S. Y., Park J. S., Park S. K., Jung M. Y. Food Chem. 2016, vol. 204, pp. 94–101.
11. Kaushik M. K., Aritake K., Takeuch A., Yanagisawa M., Urade Y. Scientific reports. 2017, vol. 7, no. 1, p. 8892.
12. Chatterjee S., Karmakar A., Azmi S. A. et al. Proceedings of the Zoological Society. 2017, vol. 69, pp. 1–7.
13. Pope L. E., Marcelletti J. F., Katz L. R., Katz D. H. J Lipid Res. 1996, vol. 37, pp. 2167–2178.
14. Makhafola T. J., Elgorashi E. E., McGaw L. J., Awouafack M. D., Verschaeve L., Eloff J. N. BMC complementary and alternative medicine. 2017, vol. 17, no. 1, pp. 446.
15. Harrabi S., Ferchichi A., Bacheli A., Fellah H. Lipids in health and disease. 2018, vol. 17, no. 1, p. 82.
16. Martin Y. C., Kofron J. L., Traphagen L. M. J. Med. Chem. 2002, vol. 45, pp. 4350–4358.
17. Maideen S. K., Selvaraj J. A., Rai R. S. V. International Tree Crops Journal. 1990, vol. 6, no. 2–3, pp. 173–181.
18. Thind S. K. Plant growth regulation. 1991, vol. 10, no. 3, pp. 223–234.
19. Kathuria E. et al. The Journal of Plant Science Research. 2012, vol. 28, no. 2, p. 239.
20. Tamura Y., Mori T., Nakabayashi R., Kobayashi M., Saito K., Okazaki et al. Frontiers in plant science. 2018, vol. 9. Available at: https://doi.org/10.3389/fpls.2018.00665
21. Naas O. et al. Environmental Pollution. 2016, vol. 214, pp. 816–821.
22. Byun A. R. et al. Evidence-Based Complementary and Alternative Medicine. 2015, vol. 2015.
23. Sattar A., Badshah A., Aurangzeb. Plant Foods for Human Nutrition. 1995, vol. 47, no. 1, pp. 63–70.
24. Shaji K. P., Umesha S., Bharathi P. S. Int. J. Chem. Pharm. Sci. 2014, vol. 5, pp. 101–105.
25. Zakharova Yu. V. Uspekhi meditsinskoy mikologii [Advances in medical mycology]. 2018, vol. 18, pp. 77–81. [In Russian] 

 

Дата создания: 23.12.2020 09:41
Дата обновления: 23.12.2020 12:14